B.A. DEGREE EXAMINATION - ECONOMICS

FIFTH SEMESTER - NOVEMBER 2014
EC 5404-MATHEMATICS FOR ECONOMISTS
Date: 12/11/2014
Dept. No. \square Max. : 100 Marks
Time : 09:00-12:00

PART A

Answer any FIVE of the following questions:-
[5x4=20 marks]

1. Define 'Limits'.
2. Distinguish between 'Left Side Limit' and 'Right Side Limit'.
3. State the conditions for Continuity of a function.
4. State the conditions for Relative Maxima and Minima of $Z=f(X, Y)$.
5. Find $\frac{d y}{d x}$ if (a) $\mathrm{y}=\frac{\mathbf{z}^{2}}{z^{2}+1}, \quad \mathrm{Z}=\sqrt{2 x+\mathbf{1}}$.
(b) $y=\left(x^{4}+5\right)^{2}$
6. Find the total differential if $Z=2 X^{3}-4 X Y^{2}+3 Y^{3}$.
7. Evaluate $\int \boldsymbol{x} \sqrt{\mathbf{2 x ^ { 2 }}+\mathbf{1}} \mathbf{d x}$.

PART B

Answer any FOUR of the following questions:-

[4X10=40 marks]
8. Explain the properties of limits.
9. Discuss the types of functions with examples.
10. Explain the conditions for relative Maxima, Minima and Saddle point in $Z=f(x, y)$.
11. Find the relative Maximum and Minimum (if any) of the function $Y=2 x^{B}-3 x^{2}-12 x+13$.

Also plot the graph for the function.
Given the total cost function $C=1000+100 Q-10 Q^{2}+1 / 3 Q^{2}$, find:
a. The Marginal Cost function
b. The slope of Marginal Cost function.
c. The Output at which Marginal Cost is equal to Average Variable Cost.
12. State and prove Euler's Theorem.
13. Given the Consumption function $C=C(Y)=1000-\frac{5000}{3+Y}$.
(i) Find the marginal propensity to consume when $\mathrm{Y}=97$.
(ii) Find the marginal propensity to save when $\mathrm{Y}=97$.
(iii) Determine whether MPC and MPS move in the same direction when Y changes.

PART C

Answer any TWO of the following question: -

14. Examine the significance of partial differentiation in economic analysis.
15. A monopolist produces his product in two different plants and his total cost functions of the two plants are given by
$T C_{1}=10-2 Q_{1}+Q_{1}^{2}$
$T C_{2}=15-6 Q_{2}+2 Q_{2}^{2}$
If the average revenue function is given by $A R=50-2 Q$, where $Q=Q_{1}+Q_{2}$, find:
a. His profit maximizing output to be produced in plants 1 and 2
b. His maximum profit.
16. The quantity demanded and the corresponding price are determined by the demand and supply functions $\mathrm{P}=36-\mathrm{q}^{2}$ and $\mathrm{P}=6+\frac{q^{2}}{4}$ respectively' Determine the corresponding Consumers' surplus and Producers' surplus.
17. Maximize $U=q_{1} q_{2}$ where U is Utility, q_{1} is quantity of good I andq q_{2} is quantity of good II subject to $10 \mathrm{q}_{1}+15 \mathrm{q}_{2}=100$.
